
MULTIPLICATIVE STRUCTURES ON MOORE SPECTRA

MAXWELL JOHNSON

1. INTRODUCTION

In my talk today I am going to follow Robert Burklund’s . The basic idea is not hard to state. He first constructs an
obstruction theory for equipping quotients with multiplicative structures for an arbitrary stable∞-category and then
shows that we can actually show these obstructions vanish when we study them in SynF2

. This is in stark contrast to
running the argument in Sp. Intuitively, one can think of SynF2

as providing an extra grading that spreads classes out by
remembering their Adams filtration. This extra dimension increases the sparsity of the homotopy groups, allowing us to
conclude that the relevant obstructions vanish, whereas these groups are not trivial when only viewed spectra. He then
uses the symmetric monoidal realization functor to transport the synthetic multiplicative structure to a classical one.

Warning 1.1. Robert uses the convention that filtrations are increasing in his paper. This conflicts both with my own
previous lecture as well as most of the literature on the subject, minus Higher Algebra. I have attempted to carefully
switch this back to the decreasing convention, but I may have made typographic errors. As such any indexing issues are
almost certainly mine.

2. A TOY EXAMPLE

In his paper, Robert begins with an example that I found mystifying for a long time. I am going to try to work it out
in detail here. Fix C to be a presentably symmetric monoidal stable∞-category with unit 1C. Let Cfil be its category of
filtered objects, and τ the usual deformation parameter.

Let I ∈ C be an arbitrary object equipped with a map v : I → 1C. There are two quotients to consider in this
situation. The first is the usual cofiber in C, which we will denote 1C/v. There is then the En-quotient defined as the
pushout of

1C{I} 1C

1C 1C //
n
v

v

0

in AlgEn
C, where 1C{I} is the free En-algebra. In trying to construct an En-algebra structure on 1C/v, we might start

with 1C //
n
v and attempt to attach En-cells until we get a ring with underlying object 1C/v.

And enhancement of this strategy is to first spread things out a bit. Let 1Cfil be the unit in Cfil. It is the image of 1C
under a (unique) symmetric monoidal left adjoint ι : C→ Cfil. We then have the composition:

ιI[−1]→ 1Cfil [−1] ι(v)[−1]−−−−−→ 1Cfil [−1] τ−→ 1Cfil
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which has levelwise depiction:
... ... ...

0 0 0

0 0 1C

I 1C 1C

I 1C 1C

... ... ...

id

idv

v

We will abuse notation to identify ι(v) and all of its shifts with v. Note that after inverting τ , we can recover 1C //
1
v

and 1C/v. We can then depict 1Cfil/τv as

... 0 1C 1C/v 1C/v ...

Let us try to compute some of 1Cfil //
1
τv. To do so, we will study the effect of killing τ , i.e., taking the associated

graded.

Lemma 2.1. There is an equivalence of E1-rings

gr∗1Cfil //
1
τv ≃ 1Cgr{ΣI(−1)}

of objects in Cgr, where I(−1) is the graded object with L in degree −1 and 0 elsewhere.

Proof. Killing τ will preserve the defining pushout diagram

1Cfil{ιI[−1]} 1Cfil

1Cfil 1C //
1
v

τv

0

and send it to the diagram

1Cgr{I(−1)} 1Cgr

1Cgr gr∗1C //
1
v

0

0

This diagram has another description. Namely, it can be reconstructed by taking the span 0← I(−1)→ 0, applying
the free algebra functor, and taking the pushout. But the free algebra functor preserves colimits, so that gr∗1C //

1
v ≃

1Cgr{ΣI(−1)}. □

We now know that 1Cfil //
1
τv is ”built from” the graded pieces of the object 1Cgr{ΣI(−1)}. It is worth investigating

this object in low degrees. Recall that the free E1-algebra on a module M looks like

1{M} =
⊕
k

M⊗k+1

on underlying objects. By putting L in degree 1 this allows us to view 1Cgr{I(−1)} as having graded pieces I⊗k in
degree k. As a result, we know that 1Cfil //

1
τv is built from the cells I⊗k placed in degree −k. It remains to understand

how they are attached.
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Consider again the defining pushout

1Cfil{ιI[−1]} 1Cfil

1Cfil 1C //
1
v

τv

0

We will only attempt to understand this quotient in low degrees.

Lemma 2.2. The degree −1 part of the defining pushout for 1Cfil //
1
τv is

1C ⊕ I 1C

1C 1C/v

id⊕v

0

Proof. First we show that the degree −1 filtered part of 1Cfil{I[−1]} is 1C ⊕ I. We need to compute the degree one
part of

⊕
k ι(I)[−1]⊗k. Note that X[s] = X ⊗ 1Cfil [s] so that

ι(I)[−1]⊗k ≃ ι(I)⊗k ⊗ 1Cfil [−1]⊗k ≃ ι(I⊗k)[−k]
As we can see, the only terms that will contribute to degree −1 are ι(I)[−1]⊗0 and ι(I)[−1]⊗1. That the top horizontal
map is id⊕ v follows.

If we knew that the forgetful functor preserved pushouts, we would be done, and we apply the lemma below. It turns
out that it is for reasons I will explain if asked but will not get into here. □

As a result, we know that 1Cfil //
1
τv looks like:

...→ 0→ 1C → 1C/v → (?)→ ...

Through degree −1 this agrees with 1Cfil/τv. Our goal will be to attempt to force this higher filtered pieces to agree.
The degree −2 part fits into a cofiber:

1C/v → (?)→ Σ2I⊗2

and we would like to kill the contribution of the third term. To do so we need a lift:

1Cfil // τv

ι(Σ2I⊗2)[−2] (1Cfil // τv)/τ

so that we might take a further E1-cofiber. The obstruction to doing so is a class:

Q̄1(v) ∈ [Σ1I⊗2, 1C/τ ]

which, if zero, allows us to equip 1C/τv with a unital multiplication as this would appear as the degree ≥ −2 part of
the filtered object so-constructed.

3. RECOLLECTIONS ON THE En-OPERADS

Recall that one point of view on the En-operads is that they are formed as a sequence of spaces En(k) with a natural
Σk-action. The homotopy orbits of En(k) are given (up to homotopy) by the space of unordered configurations of k
points in Rn.

An advantage of the∞-formalism is that spaces (∞-groupoids) can be viewed as a full subcategory of Cat∞. As a
result, given an operad O of spaces, one can define O-algebra structures on∞-categories in the same way as one does
on spaces, i.e. such a structure is given by a series of structure maps:

θk : O(k)× C×k → C

which are all Σk-equivariant. We can use the diagonal C→ C×k to restrict this to an equivariant functor

O(k)× C→ C

which has an adjoint pair
C→ FunΣk

(O(k),C)
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Any functor on the right automatically factors as O(k)hΣk
→ C.

Definition 3.1. Let C be a presentably Ek-monoidal∞-category. Then we define Dn
k : C→ C to be the composition:

C→ Fun(En(k)hΣk
,C)

take limit−−−−−→ C.

This construction will be of essential important in phrasing the obstruction theory.

4. OBSTRUCTION THEORY

Using material from his appendix (which I won’t get into) Robert extends the ideas above as follows:

Lemma 4.1. Let I ∈ C. Then there exists a sequence of En-rings in Cgr

1Cgr = R0
r1−→ R1

r2−→ R2
r3−→ ...→ 1Cgr ⊕ ΣI(−1)

converging to the trivial square zero extension of the unit by ΣX placed in degree −1. Moreover the maps rk appear in
pushouts of the form:

1Cgr{Σ−1−nDn
k (Σ

n+1X(−1))} 1Cgr

Rk Rk+1rk

and each Rk is equivalent to 1Cgr ⊕ ΣI(−1) through degree −k.

Proposition 4.2. Given a map v : I→ 1C there exist inductively defined obstructions:

Θk ∈ [1C{Σ−2−nDn
k (Σ

n+1I), 1C/v]

for k ≥ 2 allowing one to construct a sequence of En-rings

R̄0 → R̄1 → ...→ 1C/v

which will converge to an En-structure on 1Cgr . These all fit into an analogous pushout square.

Proof Sketch. The idea is to produce at each stage a filtered ring R̃k whose associated graded is Rk and which realize
to R̂k. Given R̃k−1, we produce R̃k by lifting

R̃k−1

1Cfil{Σ−1−nDn
k (Σ

n+1X(−1))} Rk−1

and pushing out in a square as in the theorem statement. One checks that the obstruction to doing so is the class listed.
We then define R̄k to be the realization of R̃k. That the R̃k converge to 1Cfil/τv is checked on associated and the
convergence of the R̄k follows. □

The final result we will need will increase the number of obstructions but in doing so make the groups we need to
check simpler.

Lemma 4.3. There exists a resolution of Dk
n(Y ) by finitely many copies of Σ−cY where 0 ≤ c ≤ (n− 1)(k − 1).

Proof Sketch. This comes from the cellular filtration on the space of unordered configurations which models En(k)hΣk
.

□

Proposition 4.4. There exist refinements of the obstructions θk, which we denote θk,α of the form:

θk,α ∈ [Σ−2−n−cα(Σn+1X)⊗k, 1C/v]

where cα ≤ (n− 1)(k − 1). For n = 1 this simplifies to obstructions

θk ∈ [Σ−3(Σ2X)⊗k, 1C/v]

as E1(k)hΣk
is a point.
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5. MOORE SPECTRA

We now will apply the obstruction theory to prove Robert’s results on multiplicative structures on Moore spectra.
We not be applying the theory to the category Sp. Although we could do so, the obstructions live in groups that are not
trivial in Sp. Instead, we will provide a multiplicative structure on a lift of the Moore spectra to SynF2

and then use the
symmetric monoidal realization functor to provide the desired structure on the classical spectrum.

Convention 5.1. We will grade synthetic spectra by St,f where t is the topological degree, i.e. ℜ(St,f ) ≃ St and f
denoted Adams filtration.

Recall that there is a fully faithful functor ν : Sp→ SynF2
which is a section of ℜ : SynF2

→ Sp. Given any map of
spectra f : X → Y we may lift it by taking ν(f). This will not be a unique lift, however. Since realization corresponds
to inverting τ , we see that any τ -multipliple or even τ -division of ν(f). This presents a nontrivial choice even in the
case f is the map 2 : S→ S. We will choose the class:

2̃ : S0,1 → S0,0

which is uniquely defined as ν(2)
τ .1

Theorem 5.2. There exists an E1 structure on S/23.

Proof Sketch. Lifting to the synthetic world, we study the map of synthetic spectra

2̃3 : S0,3 → S
whose obstructions are classes θk ∈ [Σ−3,3(S2,1)⊗k,S0,0/2̃3] a synthetic refinement of Adam’s E2 vanishling line
shows that all of these classes live in 0 groups as their filtration is too high. □

Nearly identical proofs show the following claims:

Theorem 5.3. S/2q admits an En-multiplication as soon as q ≥ 3
2 (n+ 1)

6. THE GENERAL CASE

It is well known that I cannot resist giving the general version of a result. I will make this brief. Robert shows that in
general we can construct a deformation for C which plays the role SynF2

plays above using machinery of Piotr and
Irakli. He uses this to prove:

Theorem 6.1. Suppose 1C/v is a quotient admiting a right unital multiplication2. Then there is a compatible sequence
of En-algebras

...→ 1C/v
n+3 → 1C/v

n+2 → 1C/v
n+1

He uses this more powerful theorem to prove two important corollaries.

Corollary 6.2. For p > 2 there is a compatible En-multiplication on S/pn+1.

Corollary 6.3. For all p, h, n there is a height h generalized Moore spectrum with En-multiplication of the form

S/(pi0 , ..., vih−1

h−1 )

for choices of exponents ij sufficiently large.3

1Every map ν(f) is exactly as τ -divisible as its Adams filtration.
2One can use the deformation theory we spoke of at the beginning to attempt to estbalish this
3The size of the ij depends not only on the obstruction theory but also on the existence results for vj -self maps.
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