
F1OOD FOR THOUGHT

MAXWELL JOHNSON

References: This talk is almost entirely based on this survey by Oliver Lorscheid. If the talk was at all interesting to
you, I strongly recommend reading this, as it subsumes all but the end of the talk. The latter end is mostly based on the
theory of Connes-Consani which I learned from this paper of Beardsley and Nakamura. As always, feel free to contact
me at mmj002@ucsd.edu with any questions or requests for more sources.

1. INTRODUCTION

Today I am going to be discussing briefly some elements of the theory of the so-called ”field with one element” F1.
Of course, I feel compelled to begin fundamental theorem:

Theorem 1.1 (Fundamental Theorem of the Field with One Element). There is no field with one element.

Proof. Exercise. □

While this may seem like a non-starter, my hope is to convince you by the end of this talk of the following two
statements:

(1) There is a good reason to study the idea around the field with one element, and
(2) these ideas are rich and interesting.

To do so, I will be giving a high-level overview of why people began to think about this, what types of applications
there are to be had, and what the present state-of-the-art looks like. Of course, given the short nature of this talk, I will
not be able to do any of these true justice.

2. VECTOR SPACES, GRASSMANNIANS, AND K-THEORY

The theory of F1 arose as a result of the following philosophy, first taken truly seriously by Jacques Tits but this
came at a time when dinosaurs still roamed the earth and Grothendieck had not yet told people what a scheme was.
Nonetheless, Tits, ahead of his time, observed the following pattern:

Philosophy 2.1. The theory of combinatorics is often the limit of the theory of algebraic geometry over Fq as q → 1.

We will begin with some simple numerology to justify this claim. To be clear, we will not do this justice as the
examples in this note are quite simple and there are richer things to say, but JJ refused to give me the 3 hours I originally
asked for for this talk.

Dictionary 2.2. A vector space over F1 is a pointed finite set, and the category of vector spaces over F1 is the category
of pointed finite sets. The space of invertible matricies GLn(F1) is given by the symmetric group Σn.

If one thinks of a vector space as the data of a basis combined with scalar extensions, the first claim is hopefully
clear. Essentially to specify an F1-vector space we provide a basis (or just a dimension) and then we formally extend by
scalars. But there are no nontrivial scalars! As a result, a vector space over F1 of dimension n ought to be a formal 0
vector and then n additional elements. We have a nice canonical presentation of such a things as the sets:

[n]∗ := {∗, 1, ..., n}
where we [n] will denote the same set sans ∗, which we view as a formal ”basepoint” or 0 vector. Similarly, if we think
about what an F1-linear map between these should be, the requirements are that ∗ 7→ ∗ and that the nonexistent scalars
are preserved, i.e., its just a map of sets [n]∗ → [m]∗ preserving ∗. This data naturally compiles into a category Fin∗,
whose objects are the sets [n]∗ and whose maps are ∗-preserving maps of sets.

Remark 2.3. The astute reader/listener will note that I have completely ignored the addition axioms for a vector space.
The justification for this is twofold: first is that a so-called field with one element would not itself have a reasonable
notion of addition and the second is that combinatorial objects need not have additivity. As a result, some people refer
to F1-geometry as nonadditive geometry.

1

https://arxiv.org/pdf/1801.05337.pdf
https://arxiv.org/pdf/2404.04730.pdf


2 MAXWELL JOHNSON

Immediate from this description is that GLn(F1) = Σn is the symmetric group on n symbols as for any field
F we always have GLn(F) = Aut(Fn). To pursure this line of thinking a bit further, recall that for a field F the
Grassmannian Gr(k, n) is defined to be the set of all k-dimensional subspaces of an n-dimensional F-vector space.
Note that Gr(k, n) aquires a natural action of GLn(F) as an invertble linear transformation will send k-dimensional
subspaces to k-dimensional subspaces, and this action is easily seen to be transitive.

The transitivity of this action shows via the orbit stabilizer theorem

#Gr(k, n) =
#GLn(F)
#Stab(V )

where we write # for cardinality and V is an arbitrary element of Gr(n, k). One can classify the matricies in the
stabilizer as those which look like: [

A B
0 C

]
where A and C are n− k × n− k and k × k invertible matricies, respectively. We want to study the size of the objects
involved in the orbit stabilizer as q → 1. We will study the counts as q → 1. First, put:

⟨n⟩q :=

n−1∑
i=0

qi, ⟨n⟩q! :=
n∏

i=1

⟨i⟩q, and
〈
n

k

〉
q

:=
⟨n⟩q!

⟨n− k⟩q!⟨k⟩q!

which have limits n, n! and
(
n
k

)
respectively as q → 1. A common exercise in an abstract algebra course is to count

explicitly:

#GLn(Fq) =

n∏
i=1

(qn − qi−1) = (q − 1)nq
1
2 (n

2−n)⟨n⟩q!

and similar arguments show that:

#Stab(Fn
q ) = (q − 1)nq

1
2 (n

2−n)⟨n− k⟩q!⟨k⟩q!
and dividing them yields:

#Gr(k, n) =

〈
n

k

〉
We note that this last formula already gives the correct answer as q → 1, but the size of GLn and the stabilizer are
0 in this limit. However, if one removes the obvious terms which vanish (which I guess can be thought of as some
resolution of singularities) we again get the desired answers. One of the motivating reasons for the conjectural existence
of F1-geometry was to explain this.

3. THE BPQ THEOREM

Shifting gears slightly, we will again think categorically about Fin∗. If K-theory is completely uunfamiliar to you,
bear with me, this part will be short. If you don’t know what a spectrum is, for this talk you can essentially think of the
following analogy:

sets : abelian groups :: spaces : spectra
i.e., they are like spaces with a commutative addition operation where everything is only forced to hold up to higher
coherent homotopy. Every space as an associated ”suspension spectrum” and the suspension spectrum for the sphere,
denoted S, plays the role of Z in spectra. Associated to every ring R, Grothendieck constructed the group K0(R) defined

to be the group-completion (i.e., formally add in inverses) of the monoid of isomorphism classes of f.g. projective
R-modules under direct sum. For a field F, this group is not particularly interesting: f.g. projective F-modules are
just finite F-vector spaces, whose isomorphism classes are given by the nonnegative integers which group complete to
Z. Later, ”higher” groups were introduced, notably K1(R) = GL(R)ab and these were shown to be naturally linked
together, like a homology theory. Later, Quillen introduced a K-theory spectrum associated to rings given by:

π∗(BGL(R)+)

where GL is the directed limit of the inclusions GLn ⊂ GLn+1, the notation B denotes the classifying space of this
group, and the operation + is like a π1-abelianization. The functor K0 can easily be seen to depend only on the category

of modules over R. Waldhausen later showed similarly that the K-theory spectrum could be defined in terms of the
category of R-modules and could be extended to categories that were formally similar to a category of f.g. projective
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modules, so-called Waldhausen categories. Essentially, a Waldhausen category is a category with a good notion of
injections and weak equivalences. Luckily for us, Fin∗ has these: the weak equivalences are just the isomorphisms, i.e.,
bijections, and the injections are just injections.

Theorem 3.1 (Barratt-Priddy-Quillen). There is an equivalence K(Fin∗) ≃ S. If we believe that Fin∗ is the category
of finite dimensional F1-vector spaces, then K(F1) = S.

Remark 3.2. We also know by a famous result of Quillen that:

Ki(Fq) =


Z i = 0

Z/(qj − 1) j = 2i− 1 is odd.
0 otherwise.

which are substantially more regular than the famously complicated homotopy groups π∗S. To my knowledge, it is
unclear if there is any expected limiting q → 1 phenomena here, or if this limit is simply not respected by K-theory.

One way to motivate the above theorem is as follows: taking Quillen’s original construction and recalling that
GL(F1) is the infinite symmetric group Σ∞, there should be an identification:

K(Fin∗) = (BΣ∞)+

Then the key lemma is:

Lemma 3.3. There is an equivalence (BΣ∞)+ ≃ (
∐

n BΣn)
gp where the right hand side is the group completion of

the monoid inside the parentheses.

This latter presentation is easier to give a name to. To see this, we recall that one way to construction BG for G a
group is to give the point ∗ the trivial G action and take its homotopy orbits ∗hG ≃ BG. But then:∐

n

BΣn ≃
∐
n

∗hΣn

which hopefully you will trust is me is the homotopical analog of the formula for the free commutative monoid on a
point. But then we group complete, obtaining the free abelian group on a point, in the homotopical sense, which is S in
analogy with Z.

4. THE RIEMANN HYPOTHESIS AND THE ABC CONJECTURE

Recall that the Riemann-Zeta function is the analytic continuation of:

ζ(s) =
∑

n−s

and that the Riemann Hypothesis is the conjecture that its nontrivial zeroes lie on the strip of real part 1/2. This function
admits a reformulation as:

ζ(s) =
∏

p a prime

1

1− ps

which is easier to generalize. We will really be intersted however in the completed zeta function:

ζ̂(s) = π−s/2Γ(s/2)ζ(s)

where we have essentially just removed the trivial zeroes at the negative integers of the Riemann Zeta function.

Recall that an absolute value on a field K is a function ν : F → R≥0 satisfying ν(ab) = ν(a)ν(b) and ν(a+ b) ≤
ν(a) + ν(b). It is nonarchimedian if it satisfies ν(a+ b) ≤ max{ν(a), ν(b)}.

Given a nonarchimedian absolute value ν on a field K, the valution (sub)ring is the ring:

Oν := {x ∈ K | ν(x) ≤ 1}
with maximal ideal mν := {x ∈ K | ν(x) < 1}. The residue field is κν := Oν/mν .

Theorem 4.1. The nontrivial absolute values on Q are given by the standard absolute value ν∞ and the p-adic valuations
νp. The residue fields κ(νp) are isomorphic to Fp.

We will refer to a nontrivial absolute value on K as a place. This leads to the following definition:
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Definition 4.2. Given a nonarchimedian place ν, the associated local zeta factor is

ζν :=
1

1− (#κν)s

we will also give the ad-hoc definition over Q that

ζν∞ = π−s/2Γ(s/2)

Using the slightly ad-hoc definition above, we recover the completed zeta function:

ζ̂ =
∏

ν a place in Q
ζν

This definitions can be extended to more general fields.

Theorem 4.3. Every aboslute value in positive characteristic is nonarchimedian.

As a result, we can simply define without ad-hoc notation:

Definition 4.4. Given a field K in positive characteristic, the associated zeta function is:

ζK(s) =
∏

ν a place in K

ζν

Definition 4.5. A function field over Fq of degree n is a finite extension of Fq(T1, ..., Tn).

Theorem 4.6 (Hasse, Weil, Deligne). The Riemann Hypothesis holds for ζK when K is a function field over Fq .

Remark 4.7. The reason for the term ”function field” is that such field extensions arise as the fields-of-functions for
n-dimensional algebraic varieties over Fq .

We will only need to discuss the case where F is a 1-dimensional function field so that the associated algebraic variety
is a curve. In this case, the curve CF will encode the various places of the function field F. Using this information, it
turns out we can tie the function field Riemann Hypothesis to counting intersection points of the diagonal embedding:

C ↪→ C ×Spec Fq
C

where one copy of C is twisted by the Frobenius. Using techniques from arithmetic geometry, this can then be explicitly
computed.

The upshot here is that we already have a nice ”curve” which encodes most of the places of Q, i.e., the curve SpecZ.
The only issue is that (1) this is not a curve as naturally defined and (2) it is missing the place ν∞. The proposed
resolution to this is:

Philosophy 4.8 (Deninger(?)). The scheme SpecZ is a curve over F1 and can be compactified to a scheme SpecZ
whose point at infinity corresponds to ν∞.

If the above is made sense of, and a suitable theory of arithmetic geometry over F1 established, the hope is to prove
the Riemann Hypothesis using techniques analogous to curves over Fq . It was later noticed by Smirnov that if suitable
Hurwitz equalities are satisfied, then a conjectural map:

SpecZ → P1
F1

would imply the abc-conjecture.

5. BRAVE NEW ALGEBRA AND F1

As more people began to study the idea of F1-geometry, a large number of models for F1 were introduced, many of
which overlapped and some of which subsumed eachother. Of particular interest to homotopy theorists is the model of
Connes-Consani which at its introduction also subsumed a great deal of other theories.

Philosophy 5.1. The field with one element plays the role of N associated to the sphere spectrum S.
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My final goal is to make this sound at least slightly less absurd by the end of this talk.

If we allow ourselves to believe that F1 is not really a field, then we also allow ourselves to enlarge its category of
modules. Before we can define it we need some notation. Let Spc denote one of: topological spaces with their usual
model structure, simplicial sets with the Kan model structure, or simply the ∞-category of spaces. For any category C

with terminal object ∗ let C∗ denoted the category of objects-with-basepoints, i.e., the slice category under ∗. Finally let
Fun∗(C∗,D∗) denote ∗-preserving functors. Then we define:

ΓC := Fun∗(Fin∗,C∗)

Definition 5.2. The category ModF1
of F1-modules is defined to be the category ΓSets. The object F1 itself is the

functor corresponding to including finite sets into sets.

Remark 5.3. This functor category aquires a symmetric monoidal tensor product via Day Convolution. With this
structure, the unit is F1, justifying the notation.

Remark 5.4. Note that there is no change to Aut(Fn
1 ) = GLn(F1) so that the Barratt-Priddy-Quillen theorem still

holds.

An immediate consequence of this definition is that the original category Fin∗ of finite dimensional F1-vector spaces
includes into our new F1 by sending [n]∗ to the n-fold coproduct Fn

1 ∈ ModF1
. However, we now thing of these as the

much smaller subcategory of f.g. free F1-modules. The point of enlgarging the category of F1-modules is to allow the
theory of F1 to capture a vast array of combinatorial objects. The most general embedding in the literature is that of
Beardsley and Nakamura which appeared on the arxiv recently.

Definition 5.5. A plasma is a set M equipped with a hyperoperation ⋆ : M ×M → P(M) and an identity element
e ∈ M such that:

(1) a ∈ e ⋆ a for all a ∈ M ,
(2) a ⋆ b = b ⋆ a for all a, b ∈ M .

In effect, a plasma is a set with a multi-valued commutative multiplication with a weak notion of identity. Examples
of plasmas include:

(1) all commutative monoids,
(2) all matroids,
(3) and all projective geometries.1

Hopefully the notion of commutative monoid is familiar, but we will briefly recall the other two. A matroid is
supposed to capture the notion of finding the smallest affine subspace of a vector space containing a collection of points.
A projective geometry is a matroid which is determined by finite subsets and respects unions.

Remark 5.6. I would like to know why this is called a projective geometry. My guess is that these extra axioms are
satisfies when one finds the smallest geometrically meaningful subspaces of projective spaces containing given points,
but I have not attempted to work this out.

Definition 5.7. A matroid is a set M with an operation κ : P(M) → P(M) such that:
(1) A ∈ κ(A)
(2) A ⊂ B =⇒ κ(A) ⊂ κ(B)
(3) κκ = κ
(4) If x ∈ κ(A ∪ y) but x /∈ κ(A) then y ∈ κ(A ∪ x).

a matroid is simple pointed if κ(∅) = {0} is a singleton and satisfies κ({x}) = {x, 0} for all x. A simple pointed
matroid is a projective geometry if κ(A) is the union of κ(B) across finite subsets B ⊂ A and if κ(A ∪B) is the union
of the κ({x, y}) across x ∈ κ(A) and y ∈ κ(B).

Theorem 5.8 (Beardsley-Nakamura). The category of plasmas embeds fully faithfully into the category of F1-modules.
Moreover, the restriction to commutative monoids extends the Eilenberg Mac-Lane functor from abelian groups to
spectra.

1I am told there are several competing definitions of projective geometry. The one we will discuss is equivalent to that of Faire and Frolicher in
Modern Projective Geometry.
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The above is hopefully justification enough to make Philosophy 2.1 seem plausible. The final part of this talk will be
to justify our final philosophy:

Philosophy 5.9. The ring F1 is to the sphere spectrum S as N is to Z. Explicitly, under the relevant notion of group
completion, F1 is the monoid which completes to the ”abelian group” S.

This will require me to give an actual construction of the category of (connective) spectra. First, let us think more
closely about the category Fin∗. I want to claim that functors out of Fin∗ are exactly trying to encode commutative
monoid objects and that ΓC roughly encodes commutative monoids in C up to something called the ”Segal condition”.

Definition 5.10. A functor X ∈ ΓC satisfies the Segal condition if for all n we have X([n]∗) = X([n])×n. Such are
called ”special” Γ-objects (where ”object” is replaced by whatever we call objects of C).

Note that a special Γ-object in C is exactly a commutative monoid in C: the multiplication comes from the map
[2]∗ → [1]∗ which sends 1, 2 7→ 1. The unique map [0]∗ → [1]∗ will encode the unit. The commutativity comes from
the fact that the we have the commutative diagram:

[2]∗ [2]∗

[1]∗

swap

Objects of ΓC are then generalizations of commutative monoids wherein the ”multiplication” does not need to be of the
form X ×X → X but is instead a much weaker notion, which is why the theory of ModF1

= ΓSets can account for
objects like plasmsas.

Definition 5.11. A special Γ object is said to be very special if its monoid structure has inverses, defined diagrammati-
cally. These should be viewed as abelian group objects in C. In good situations, there is a group completion functor
from special to very special Γ objects.

Definition 5.12. The category of (connective) spectra Sp is the ∞-category presented by the very special Γ-spaces.
This category is symmetric monoidal with unit S.

Now finally we note that there is a natural inclusion ModF1
↪→ Sp given by including sets into spaces with the

discrete topology.

Theorem 5.13. The object F1 ∈ ModF1 is a special Γ-object whose group completion is the sphere S.2

Remark 5.14. One is led to view the category of ΓSpc as some sort of (connective) derived category of F1-modules. I
do not think this has recieved serious study in the literature, and would be interested to understand better if this would
lead to applications of homotopy theory to combinatorics in the same way that derived categories greatly enrich the
study of commutative algebra and schemes.

Remark 5.15. There is a way to view the above theorem as a restatement of Barratt-Priddy-Quillen, but I will leave that
for the interested reader. The point is that one can take the seriously the original definition of K0 via Grothendieck’s
group completion and derive it, and for commutative monoids in spaces (of which standard commutative monoids are
examples), the derived group completion is exactly the K-theory spectrum.

2This should follow from some monoidality statement for group completion, but I could not find a reference. I will update this if I stumble across one.
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