
MULTIPLICATIVE STRUCTURES ON MOORE SPECTRA

MAXWELL JOHNSON

1. INTRODUCTION

In my talk today I am going to be discussing the recent preprint of Christian Carrick on Chromatic Defect https:
//arxiv.org/abs/2402.17519. The idea is to quantify by an nonnegative, possibly infinite integer n how far a
spectrum is from being complex orientable. We will then discuss how this question ends up being closely related to the
existence of Wood type splittings. Recall wood’s theorem:

Theorem 1.1 (Wood). ko b Cη » ku

One interesting observation is that while ku is complex-orientable, the spectrum ko is not. This idea will be
generalized to define Wood-type spectra later in the talk, and we will explain how it is related to complex orientations
in general.

2. ORIENTATIONS

In this talk, all rings and models should be understood in the weakest possible sense, i.e., rings E as monoids in hSp
and modules M as spectra for which there exists a diagram

M
unit

ÝÝÑ E b M Ñ M

factoring the identity on M . Let ιn : CPn
Ñ CP8 be the standard inclusion. Recall that a homotopy ring spectrum E

is said to be complex-orientable if the induced map

E2pCP8
q

ι1
ÝÑ E2pCP1

q

is surjective. Because CP1
» S2, the right hand side is canonically isomorphic to π0E. An orientation of E is a choice

of preimage for 1 under ι1. It is an important theorem in the study of chromatic homotopy theory that orientations are
in bijection with MU-algebra structures MU Ñ E.

It will be convenient to expand the defintion of complex-orientability to work with spectra X which are not necessarily
rings. Recall that one construction of CPn is to equip S2n`1 with the circle action T and quotient CPn

» S2n`1{T.
Write σk for the quotient map S2k`1 Ñ CPk. The cofiber of σk is CPk`1, so we may think of σk as the top-cell
attaching map for CPk`1. Note that

σ1 : S3 Ñ CP1
» S2

is the map Σ2η, identifying Cη » Σ´2CP2.

Definition 2.1. A spectrum Y is complex orientable if Y b σk » 0 for all k ě 1. In effect, we ask that Y kills all the
attaching maps for CP8.

Remark 2.2. An immediate consequence of this definition is that it is closed under retracts and tensoring with arbitrary
spectra.

Proposition 2.3. If E is a ring spectrum then both definitions of complex orientable coincide.

Proof. First suppose E kills the attaching maps. Then we have to show that S Ñ E factors over Σ´2CP8. But the
assumption gives a splitting and therefore a composition:

Σ´2CP8
Ñ E b Σ´2CP8

»
à

kě0

Σ2kE Ñ E

in the opposite direction, given an extension over Σ´2CP8 of the unit, we get a class in x P π´2F pCPk
`, Eq and can

define
fk :

à

0ďnďk

Σ´2nE Ñ F pCPk
`, Eq

1
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whose nth component is Σ´2nE
xn

ÝÝÑ E b F pCPk
`, Eq Ñ F pCPk

`, Eq. When we filter the left hand side in n and
the right hand side via the cellular filtration on CPk, we get a map of filtrations and one can check that it induces an
isomorphism on associated gradeds. This implies that E b CPk´1

Ñ E b CPk splits, so that the attaching map must
be killed. □

An upshot of this definition is that it also extends the comparison with MU:

Proposition 2.4. If Y is complex orientable (and not necessarily a ring) if and only if it is an MU-module.

We will return to the above and sketch its proof later.

Corollary 2.5. If Y is complex orientable the Adams-Novikov for Y collapses onto the 0-line.

A great many spectra of interest are not, themselves, complex orientable.

3. REVIEW OF Xpnq AND T pnq

Recall that there is an equivalence ΩSU » BU . One way to define MU is as the Thom spectrum of the map
ΩSU Ñ BU , which is a map of infinite loop spaces, granting MU the structure of an E8-ring. Moreover, we have a
filtration of the left hand side

˚ » ΩSUp1q Ñ ΩSUp2q Ñ ... Ñ SU

by 2-fold loop spaces with 2-fold loop maps. Putting Xpnq for the Thom spectrum of ΩSUpnq Ñ BU we get a
filtration by E2-rings

S “ Xp1q Ñ Xp2q Ñ ... Ñ colimXpnq » MU

whose original claim to fame is their integral role in the Nilpotence Theorem of DHS. The central idea is that each
map Xpnq Ñ Xpn ` 1q detects nilpotence, and one descends this tower to the sphere.1 Note that X b MU is an
MU-module by construction, and if Y is itself an MU-module, then Y b Xpnq is as well for all n. As a result, one can
view the attempt to orient Y as an attempt to descend the Xpnq-tower similarly to the Nilpotent Theorem.

4. CHROMATIC DEFECT AND WOOD TYPES

Proposition 4.1. A spectrum Y kills the attaching maps σk for 1 ď k ď n ´ 1 if and only if Y is an Xpnq-module,
where 1 ď n ď 8.

Proof sketch. We first assume Y “ E is a ring satisyfing p2q. As inpute we take the isomorphisms:

H˚pXpnq;Zq “ Zrb1, b2, ..., bn´1s

From here, we consider the map Σ´2CPn
Ñ Xpnq which induces on AHSS E2 pages the map

E˚ b H˚pΣ´2CPn
q Ñ E˚ b H˚pXpnqq

this spectral sequence ends up collapsing, allowing us to identify E b Xpnq with EtMu where M is a monomial basis
for the ring Zrb1, ..., bn´1s. The action Xpnq b E Ñ E is the projection corresponding to 1.

For the non-ring case we observe that the endomorphism ring of Y will still kill the attaching maps, so that EndpY q

is an MU-module, and Y is certainly an EndpY q-module. Conversely, if Y is an Xpnq-module, then Y bσk is a retract
of Y b Xpnq b σk, so the maps must be killed as Xpnq kills them. □

In particular, the spectrum Y b Xpnq is an Xpnq module, and therefore kills the appropriate range of attaching
maps. From this point of view, we can think of the functor ´ b Xpnq as forcibly killing finitely many of the attaching
maps. We can then ask whether, after killing finitely many of them, the rest die for free.

Definition 4.2. A spectrum Y is said to have chromatic defect ď n if Y bXpnq is complex orientable. It has chromatic
defect n if this is the least such n. We write ΦpY q for the chromatic defect of Y .

Note that if Y b Xpnq is complex orientable and m ě n then Y b Xpmq is also complex orientable, which is
immediate from the perspective of modules. Indeed, there is a stronger result:

Lemma 4.3. If R Ñ S is a ring map then ΦpRq ě ΦpSq.

1In a project that I will eventually finish, I show that one can bound the lossage of exponent that occurs at each stage.
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Proof. If R b Xpnq is complex orientable if and only if it is an MU-module. But then

S b Xpnq » S bR pR b Xpnqq

is again an MU-module. □

Proposition 4.4. A spectrum Y has chromatic defect ď n if and only if Y b σk » 0 for all 1 ď k ď n ´ 1.

Remark 4.5. One interpretation of the above is that the sphere is the ”least” complex orientable ring, as every other
ring will accept a map S Ñ R. Numerically, this is seen in the fact that ΦpSq “ 8 as the sphere kills no attaching
maps.

Example 4.6. We will prove the following as we go:
(1) ΦpSq “ 8

(2) Φpkoq “ 2
(3) Φptmfq “ 4.

and ΦpEq “ 1 if and only if E itself is complex orientable.

For the remainder of this talk, it will be helpful to work p-locally. Recall that MU splits with summand BP after
doing so. Heuristically, the Xpnq spectra can be viewed as adding in each of the polynomial generators of MU, and
indeed Xpnq Ñ MU is an equivalence in the appropriate range. Then BP has only a subset of these generators in the
vn, so one might expect that there is a ”shorter” filtration at a prime. Indeed, there are spectra T pnq :“ Xppnqrϵ´1s

where ϵ is the idempotent splitting BP off of MU. They are only known to be E1.

Definition 4.7. A spectrum Y has p-local chromatic defect ď n of Y b T pnq is complex orientable. We write ΦppY q

for the p-local version.

Lemma 4.8. When E is p-local ΦppY q “ tlogp ΦpY qu.

We now turn to the concept of Wood type spectra. Recall that a finite spectrum F is said to be BP-projective if
BP˚F is projective over BP˚. This is equivalent to asking that it be finite free.

Definition 4.9. A p-local spectrum Y is said to be of Wood Type if there exists a finite BP -projective spectrum F such
that Y b F is complex orientable.

Example 4.10. Note that BP˚Cη is finite free, so that the Wood theorem ko b Cη » ku exhibits ko as Wood-type,
justifying the defintion.

The notion of Wood-type is closely related to chromatic defect via:

Proposition 4.11. Every finite BP-free F is a finite T pnq-free for some n ă 8.

Proof sketch. As spectra, BP b F “ BPrAs for some finite index set A. Choosing maps Sα Ñ BP b F for α P A,
we see that the connectivity of T pnq Ñ BP allows us to choose n ąą 0 such that all of the generators factor. Tensoring
with BP over T pnq this becomes an equivalent, and was therefore always an equivalent as BP is free over T pnq. □

Corollary 4.12. If Y is Wood-type then it has finite chromatic defect.

Proof. Let F be a finite T pnq-free spectrum witnessing the Wood-type-ness of Y . Then Y b T pnq is a summand of
Y b T pnq b F and is therefore an MU-module. □

5. COMPUTING SOME CHROMATIC DEFECTS

There turns out to be a nice obstruction theory for chromatic defects.

Construction 5.1. Because T pnq is an Xppn`1 ´ 1q-module, there is a splitting:

T pnq b Σ´2CPpn`1
´1

» T pnqtb0, ..., bpn`1´1u

in degrees less than 2pn`1 ´ 3 the spectrum T pnq looks like BP and therefore its homotopy groups vanish in even
degrees. As a result, the attaching map:

σpn`1´1 : S2pn`1
´3 Ñ Σ´2CPpn`1

´1

has nonzero component only at the b0 copy of T pnq. Denote by χn`1 P π2pn`1´3T pnq the projection.
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Proposition 5.2. The class χn`1 generates π2pn`1´3T pnq – Z{p.

Theorem 5.3 (Beardsley). If pn ď m ă pn`1 then Xpm ` 1q “ Xpmqrbms is the free E1-Xpmq-algebra on a degree
2m generator. If m “ pn`1 ´ 1 then Xpm ` 1q is the free E1-Xpnq-algebra with a nullhomotopy of χn`1.

Proposition 5.4. For E a p-local ring spectrum, ΦppEq ď n if and only if χm`1 has trivial Hurewicz image in
E˚T pmq for all m ě n.

Proof. E b T pmq is a T pm ` 1q-module if and only if

σpm`1´1 : Σ2pm`1
´3E b T pmq Ñ E b T pmq b Σ´2CPpm`1

´1

is null. The domain splits as before, so it suffices to prove E b χm`1 is null. But because E is a ring, it suffices to
check the condition in the proposition. □

5.1. Finite Spectra.

Theorem 5.5. Suppose that k,m are finite positive integers chosen such that pn ď m ă pn`1 ď m ` k. Then there
are no nontrivial compact Xpmq-modules which are also Xpm ` kq-modules.

Corollary 5.6. For any finite spectrum F , we have ΦppF q “ ΦpF q “ 8.

Proof. Choose p so that Fppq is nontrivial and drop the p-localization from the notation. Assume that ΦppF q “ m ă 8.
Then note that Xpmq b F is a compact Xpmq-module, but then by assumption it is an MU-module, and therefore an
Xpm ` kq module for all k. □

Notation 5.7. Write A
Xpnq
˚ for the relative dual Steenrod algebra π˚pFp bXpnq Fpq and write H

Xpnq
˚ p´q for the

relative homology functor π˚p´ bXpnq Fpq. Note that the latter is a comodule over the former.

Remark 5.8. Note that there is a map A˚ Ñ A
Xpnq
˚ coming from the spectral map:

Fp b Fp Ñ Fp bXpnq Fp

induced by the pair of S-linear maps including Fp into each side of the relative product.

We take the following lemmas as input in proving Theorem 5.5.

Lemma 5.9. If pn ď m ă pn`1 then the map A˚ Ñ A
Xpnq
˚ sends ζp

k

n`1 to a nonzero coalgebra primitive for each k

when p ą 2 and the same is true for ζ2
k`1

n`1 at p “ 2.

Lemma 5.10. When F is a compact Xpmq-module, EndXpmqpF q is a compact Xpmq-module.

Lemma 5.11. When F is a compact Xpmq-module, HXpmq
˚ Xpmq is finitely generated.

Proof of Theorem 5.5. Recall that we have fixed pn ď m ă pn`1. Let F be a compact Xpmq-module which we assume
also admits the structure of an Xpm`kq module where m`k ą pn`1. By Beardsley’s theorem, χn`1 P π˚Xpm`kq

is null, so that the map also is null in EndXpmqpF q. As a result, we get a map

f : Xppn`1q Ñ EndXpmqpF q

via the universal property. Write E for the endomorphism ring on the right. The relative homology H
Xpmq
˚ pEq is

bounded above by finite generation and we have A
Xpmq
˚ -comodule maps:

H˚T pn ` 1q Ñ H˚pXppn`1qq Ñ H
Xpmq
˚ pXppn`1qq Ñ H

Xpmq
˚ pEq.

On the first term above, we have the coaction Ψpζp
k

n`1q “ 1 b ζp
k

n`1 ` ζp
k

n`1 b 1 is primitive. As a result, the composite

sends ζp
k

n`1 to a nonzero element for all primes and k ą 1, contradicting boundedness. □
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5.2. fp-Spectra. Recall the following definition:

Definition 5.12. A p-complete bounded-below spectrum E is said to be fp if it satisfies any of the following equivalent
conditions:

(1) There exists finite p-local F such that π˚E b F is finite.
(2) There exists a finite p-local F such that E b F splits as finitely many copies of Fp.
(3) There exists a finite Apnq˚-comodule M such that H˚pE,Fpq – A˚ ˝Apnq M .
(4) H˚pE,Fpq is finitely presented over the Steenrod algebra.

The third term in particular provides nice change-of-rings isomorphisms for the E2-page of the Adams Spectral
sequence:

ExtApFp,A ˝Apnq˚
Mq – ExtApnqpFp,Mq

Moreover, if M is a A-comodule which is cofree as a Ppn ´ 1q˚-comodule M – Ppn ´ 1q b V , then

M – Apnq˚ ˝Epnq˚
V

leading to a second change of rings:

ExtApnq˚
pFp,Mq – ExtEpnq˚

pFp, V q

Leveraging these provides the following:

Proposition 5.13. If E is fp with H˚pE,Fpq – A˚ ˝Apnq M then

H˚pE b T pnqq – H˚E b Ppn ´ 1q b Fprt2
n

1 , t2
n´1

2 , ..., t2ns – pA˚ ˝Epnq Mq b Fprt2
n

1 , t2
n´1

2 , ..., t2ns

and the E2 page of the Adams spectral sequence for E b T pnq is

ExtEpnq˚
pFp,Mq b Fprt2

n

1 , t2
n´1

2 , ..., t2ns

Corollary 5.14. If E is an fp ring spectrum with presentation as above, then ΦppEq ď n if

Ext
s,2pm`1

´3´2pp´1q˚`s
Epnq

pFp,Mq “ 0

for all s ě 2 and m ě n. In particular, it holds if this Ext is concentrated in even stems t ´ s.

Example 5.15. One can check that the above applies to ko and tmf to show that the former has chromatic defect 2 and
the latter has chromatic defect 4.

5.3. Wood-type fp spectra.

Definition 5.16. We say that a spectrum E is algebraicly Wood type if there exists a finite even comodule P such that
H˚E b P is an H˚MU-module.

Proposition 5.17. Every fp spectrum E with H˚E – A˚ ˝Apnq˚
M with finite chromatic defect is algebraicly wood

type.

Proof. Omitting the chromatic defect assumption, we always have an isomorphism

H˚E b Ppn ´ 1q˚ – A˚ ˝Epnq˚
M

and when E has finite chromatic defect, H˚pE b T pmqq is an H˚MU module. However, by the computation of
H˚pE b T pmqq, the left hand side is a retract and therefore itself an H˚MU-module. □

Theorem 5.18. If E is an fp ring with finite chromatic defect such that the Adams spectral sequence for BP b E
collapses at E2, then E is Wood-type.

We take as input the lemma:

Lemma 5.19. There exist finite spectra F which are retracts of pCPpn

qbN for N large enough with the property that
H˚pF ;Fpq is a free Ppn ´ 1q-module. Such an F is necessarily finite BP-projective.
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Proof sketch of the theorem. Carrick shows that we can lift the Ppn ´ 1q to BP-projective spectra, so that the claim
really relies on lifting the identification

H˚pE b T pmqq – Ppn ´ 1q b Fprt2
n

1 , t2
n´1

2 , ..., t2ns

to a spectrum-level splitting. This relies on lifting the classes t2
n´i`1

i along the map νpE b T pnqq Ñ νpE b T pnqq{τ .
This can be done when the Adams-spectral sequence for E b T pnq collapses at E2 as this implies that there was no
τ -torsion to begin with. Now choose F as in the lemma with basis for its homology tb1, ..., bku. It is possible to fix a
map:

ι : F Ñ T pnqtb1, ..., bku

which on homology
à

1ďiďk

Σ˚Ppn ´ 1q Ñ
à

1ďiďk

Ppn ´ 1q b Fptt2
n

1 , t2
n´1

2 , ..., t2nu b Fptbiu

sends bi to bi. We can extend this over

E b F rt2
n

1 , t2
n´1

2 , ..., t2ns Ñ E b T pnqtb1, ..., bku

which is an equivalence. As a result, E b F is a retract of E b T pnq and is therefore complex orientable. □

Combining previous results:

Corollary 5.20. If E is an fp ring such that H˚E – A˚ ˝Apnq˚
M and such that ExtEpnqpFp,Mq is concentrated in

even stems then E is Wood type with ΦppEq ď n.

6. SOME OTHER RESULTS

It would not do the paper justice to only present the computations above, so here we list them without proof.

Theorem 6.1. Here are some computations in the rest of the paper:
(1) Φpjq “ 8

(2) ΦpERpnqhC2q “ 2n where ER is a C2-lift of Morava E-Theory.
(3) ΦpEOnpGqq “ pN pGq where EOnpGq “ EpnqhG for G a finite subgroup of the Morava stabilizer group and

NpGq is a certain function in terms of the group.

And one last application:

Theorem 6.2. For E a Wood-type spectrum, the ANSS can be extended to a full plane spectral sequence using the
duals of the finite BP-projective F in the definition. This Z-ANSS enjoys the following properties:

(1) The natural map ANSSpEq Ñ Z ´ ANSSpEq is an isomorphism on E2 is positive filtration and a surjection
in filtration 0.

(2) Along the same map there is a 1 ´ 1 correspondce of differentials whose source has nonnegative filtration.
(3) The Z-ANSS converges to 0.

7. SOME SYNTHETIC REMARKS

I am going to emphasize the point of view of Fp-synthetic spectra in this section of the talk, which Carrick remarks
upon but does not flesh out entirely. Any errors introduced are my own. In particular, claims with asterisks do not
appear in the original paper.

I will only use Fp-synthetic spectra, and will therefore denote the category Syn. Let ν : Sp Ñ Syn denote the
synthetic analog. Many of the following definitions and claims are only implicit in the Carrick paper, and any errors
introduced are my own. Recall importantly that ModpCτq » StablepA˚q and that νE{τ is identified with H˚E in the
latter category.

Definition 7.1. A synthetic spectrum E is synthetically orientable if ´ b νE kills all of the synthetic attaching maps

σsyn
k : S2k`1,1 Ñ νCPk

or, equivalently, if it is a νMU-module by arguments analogous to those in Sp.

Definition 7.2. A synthetic spectrum E is has synthetic chromatic defect ď n if νpE b Xpnqq » νpEq b νXpnq is
complex orientable.
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Definition 7.3. A synthetic spectrum E is Wood type if there is a compact νBP-projective F such that E b F is
complex orientable.

Remark 7.4. The class σsyn
k is not νpσkq, but satisfies τσsyn

k “ νpσkq. One should think of the former as representing
a class in filtration 1 of E2 which detects σk. Importantly, the former class is not τ -divisible, making the following
definitions more sensible.

Remark 7.5. It is easy to see that if E has finite synthetic chromatic defect, then it will have at least the same chromatic
defect as a spectrum, and likewise for orientability. Wood type is less clear to me.

Remark 7.6. If E is synthetically wood type, then it is automatically algebraicly wood type in the sense above, after
identifying Cτ -modules with StablepA˚).

8. SOME FURTHER QUESTIONS

8.1. Non-synthetic Questions. All of the following are posed by Carrick in the original paper. Note that for a
commutative ring spectrum E there are a number of chromatic numerical invariants we can ask about:

‚ The chromatic height of E,
‚ The BP-nilpotence exponent of E,
‚ The chromatic defect of E,
‚ For E Wood-type, the minimal n such that there exists a finite Xpnq-projective F such that E b F is complex

orientable.
‚ The orientation order of Bhattacharya-Chatham:

ΘpEq “ mintn ě 1 | ξ‘n is E orientable.u

In the above, ξ is the tautological line bundle on CP8 and the A-nilpotence exponent of M is the least n for which
ĀbN b M Ñ M is null in the standard Adams tower.

The relations between the above are largely open. I think it would be interesting to related any of them to eachother.
Carrick proposes, for example:

Question 8.1. Is ΦpEq a lower bound for the BP-nilpotence exponent of E?

Question 8.2. Does there exist a spectrum with finite chromatic defect which is not Wood type?

Question 8.3. How does chromatic defect interact with Red Shift? Note that strong forms of (unproven) Red shift
assert that fp type n spectra are sent to fp type n ` 1 spectra by K-theory, where the type of an fp spectrum is defined to
be the thick subcategory of finite spectra such that |E˚V | ď 8.

8.2. Synthetic Questions.

Question 8.4. If νE is synthetically Wood type, is E Wood type? This would be nice to know, as it sets up further
questions about when algebraicly Wood type spectra are Wood type. Note that this will essentially depend on whether
ℜ sends νBP-projectives to BP-projectives.

Question 8.5. Is the synthetic chromatic defect of νE always the same as the chromatic defect of E? It is not hard to
see that if we phrase the question in terms of νpσkq, the answer is yes. However, Carrick suggests using the class in
degree p2k ` 1, 1q which can be thought of as νσk

τ since it satisfies the implicit relation. Therefore, the only way this
statement can fail to be true is if σsyn

k is nontrivial τ -torsion, i.e., it is killed by a d2 in the Adams spectral sequence.

Along a completely different route, it seems similarly interesting to think about Wood type spectra and chromatic
defect from a BP-synthetic (or motivic) perspective. Indeed, the functor νBP is symmetric monoidal when one of the
two inputs is finite BP-projective, allowing Wood-type-ness to be easily imported to the synthetic world. Moreover,
CPk has a much simpler ANSS than ASS, which could potentially make the study of the attaching maps more amenable.
Here is one potential question:

Question 8.6. A finite BP-nilpotence exponent of a ring E induces a horizontal vanishing line in its ANSS, which
corresponds to a vanishing region in π˚,˚νE. Does an MU-synthetic approach to chromatic defect allow us to produce
a bound?
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